MEASURING BACKGROUND LEVELS OF INVERTEBRATE HERBIVORY IN THE TUNDRA

Sarah Rheubottom, Isabel C. Barrio, and David S. Hik.

What?

Plant-herbivore Interactions

Invertebrate Herbivory

Common Protocol

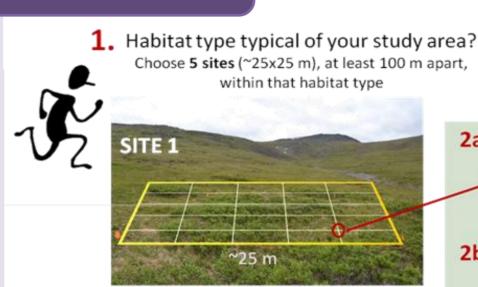
Why?

Plant herbivore interactions

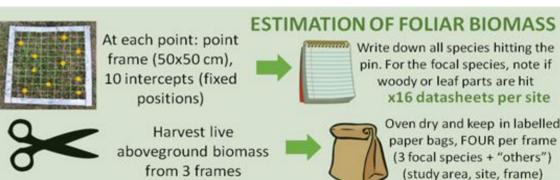
► Play an important role in tundra ecosystems

Invertebrates have been under-studied

- Have the capacity to rapidly respond to climate change
- Determine average herbivory levels so that outbreak and background levels can be defined


Common Protocol

- Monitor herbivory in tundra ecosystems
- Where does invertebrate herbivory vary?
 - Plant level
 - Site level
- 22 sites across the Arctic


*srheubot@ualberta.ca

Collection of leaf herbivory data in a common consistent method

Methods

Set up sampling grid
 4 x 4 sampling points, 5 m apart → 16 sampling points

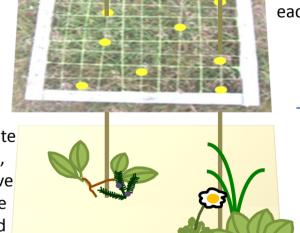
3. What are the most abundant plant species at your site?

Use the frame you generally use for vegetation assessments. We recommend

50 x 50 cm, but other sizes will also do

x12 bags per site

POINT INTERCEPT


perspecies

Choose 10 points
randomly and use those
positions for all the
assessments (e.g. mark
them with ink)
Only hits by FOCAL

For woody species note if the pin hits leaves, woody or reproductive parts. For needle-like leaved plants, record one hit per branch.

PLANTS are to be

recorded

plant species, individual ID)

Place the pin through each point perpendicular to the frame

Place the frame parallel to the surface, ~20-50 cm above the surface

At each intercept, for the focal species record as many hits as needed; this may involve several hits by the same species or different focal species

What's Next?

- Process samples to estimate biomass lost to invertebrates
 - Community level
 - Plant species level
- ► Repeat measurements at selected sites (2016)
- Complete manuscript and develop a monitoring protocol by early 2017

We would like to thank:

Kim Bennet, Rod Brook, Lisa Pollock and Sophia Konieczka at Burntpoint Creek (ON Canada); Ingibjörg Svala Jónsdóttir and many students from the Arctic Plant Ecology course in Svalbard; Edwin Liebig, Guillermo Bueno and Maite Gartzia at the sites in Iceland; Juha Alatalo at Lantjajaure (Sweden); Janet Prevey at Barrow (AK United States) and Val Bercla (Switzerland); Dorothee Ehrich, Capucine Baubin, Alexandr Sokolov, Natalya Sokolova and Svetlana Abdulmanova in Erkuta (Yamal); Otso Suominen and Tommi Andersson at Kevo Research Station (Finland); Mikhail Kozlov and Vitali Zverev in Murmansk oblast (Russia); Dagmar Egelkraut and Johan Olofsson in Padjelanta (Sweden); Gilles Gauthier, Esther Levesque and Marie-Christine Cadieux at Bylot Island (Canada); Ashley Asmus at Toolik Lake (AK); James Speed in Norway; Francis Brearley in Scotland; Yulia V. Denisova and Sergey A. Uvarov in Severnaya (Nenets Autonomous District); and many field assistants and enthusiastic friends and family members that have helped with collecting samples

NSERC

CRSNG

herbivory.biology.ualberta.ca

rannís