

# HERBIVORY NETWORK

An International Research Network to Study Herbivory in Northern and Alpine Ecosystems

#### AUTHORS: Ingibjörg Svala Jónsdottir<sup>1</sup>, Isabel C Barrio<sup>2</sup> and Herbivory Network Team

<sup>1</sup>Institute of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, Reykjavik IS-101, Iceland <sup>2</sup>Department of Natural Resources and Environmental Sciences, Agricultural University of Iceland, Árleyni 22, Reykjavik IS-112, Iceland

The **HERBIVORY NETWORK** is an international research network that brings together scientists from Arctic and alpine regions to investigate the role of herbivores in these changing ecosystems.

Plant-herbivore interactions are central to the functioning of tundra ecosystems, through their effects on biodiversity, energy flows and nutrient cycling, and can influence their resilience to ongoing environmental changes.



PHOTO: EEVA SOININEN

However, the outcomes of plant-herbivore interactions vary over space and time, leading to **different impacts of herbivory** at different sites and times. The causes of this are presumably related to ecosystem-specific conditions, such as human management, variations in geological substrate or productivity among others. To accurately forecast the future of tundra ecosystems under changing environmental conditions, we need to understand the drivers of the spatial and temporal variation that influence the outcomes of plant-herbivore interactions.

## **DEVELOPING PROTOCOLS**



#### **ITEX HERBIVORY PROTOCOL**

 In collaboration with the International Tundra Experiment (ITEX), these measurements will allow understanding the combined effect of warming and herbivory on tundra plants

#### **SOIL PROTOCOL**

 Soils are a key element of tundra ecosystems, limiting the survival, growth and reproduction of plants, but the effects of herbivory on tundra soils are still largely unknown

#### **INVERTEBRATE HERBIVORY PROTOCOL**

 Invertebrate herbivory is often overlooked in tundra ecosystems but we still lack basic understanding on how much biomass is actually removed by invertebrate herbivores in tundra

#### **VERTEBRATE HERBIVORY PROTOCOL**

 Co-occurring vertebrate herbivores feed at different intensities, frequencies and spatial scales. To compare vertebrate herbivory among different sites we need measurements of a common herbivory currency

## ANSWERING QUESTIONS

and alpine areas worldwide.



Some of the ongoing projects of the Herbivory Network address research questions related to herbivory in alpine and arctic ecosystems.

#### MAPPING KNOWLEDGE ON HERBIVORY

 Synthesizing knowledge on herbivory using systematic maps will increase our understanding of context-dependence of herbivory research carried out at many Arctic sites

#### **MAPPING HERBIVORE DIVERSITY**

 Functional and phylogenetic diversity of herbivores can ultimately influence their role in tundra ecosystems, and their resilience

#### **INVERTEBRATE HERBIVORY IN TUNDRA**

• Investigating patterns of invertebrate herbivory across the tundra biome will allow estimating biomass losses at the plant community level

### **COORDINATING RESEARCH**



**SINCE 2013** the Herbivory Network has been contributing to making research on tundra herbivory more global. Several workshops and meetings have been organized, posters have been presented at numerous conferences, three papers and a global data synthesis have been published, drafts of common field protocols have been developed, students have been recruited, and the member list includes 125 enthusiastic colleagues from 17 countries interested in contributing to new work.

The **HERBIVORY NETWORK** was initiated with the support of the Terrestrial Working Group of IASC.

For more info: HTTP://HERBIVORY.BIOLOGY.UALBERTA.CA

Effectively addressing these questions at a global scale requires COORDINATED RESEARCH EFFORTS. The

Herbivory Network covers this gap, by fostering collaborations and facilitating multi-site comparisons through the

use of common experimental protocols. The implementation of these collaborative research efforts will improve

our understanding of traditional human-managed systems that encompass significant portions of the sub-Arctic